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Abstract. This paper concerns the integration of e-Fenchel subdifferentials of proper lower
semicontinuous convex functions defined on arbitrary topological vector spaces. We make use
of integration tools to provide a representation formula of the approximate subdifferential of

convex functions, and also to identify the class of maximal cyclically monotone families of
operators.
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0. Introduction and Preliminaries

The approximate or e-Fenchel subdifferential of a function f from a real
Hausdorff locally convex topological vector space X into R [ fþ1g is the
set-valued mapping denoted by oe fð�Þ :X! 2X

�
whose graph is given, for

each real number eP0, by

oe f : ¼ fðx;x�Þ 2 X� X� : hx�; u� xi þ fðxÞ � e O fðuÞ;8u 2 Xg

where, as usual, X� stands for the topological dual space of X. In the spe-
cial case when f is convex and e ¼ 0, one recognizes the (Fenchel) subdif-
ferential of convex analysis.
Note the elementary fact that, given any e > 0, oe fðxÞ 6¼ ; whenever the

convex function f is lower semicontinuous (lsc) on X and the point x
belongs to its effective domain dom f : ¼ fu 2 X : fðuÞ < þ1g. Recall that
an extended-real-valued function is said to be proper if it does not take the
value �1 and its effective domain is a nonempty set. Throughout the
paper, the class of all proper lower semicontinuous convex functions on X
will be denoted by C0ðXÞ.
The operator oe is of great importance in convex and variational analysis

as well as in numerical optimization. It has been widely studied since its
introduction in the work of Brøndsted and Rockafellar [1], and it benefits
from a rich calculus as shown in Hiriart-Urruty [3], (see also [4, 5]).
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In [2], Combari et al. established the first integration result for e-Fenchel
subdifferentials, showing that

ðoe fðxÞ � oegðxÞ; 8e > 0; 8x 2 XÞ () f ¼ gþ constant

provided that the extended-real-valued function g is proper and f is proper
convex and lower semicontinuous with respect to the weak topology
rðX;X�Þ of X.
In Section 1 of the present paper, we obtain another integration result

for the approximate subdifferential of proper lower semicontinuous convex
functions and we make use of it, to give a representation formula for oeþd

when eP0; d > 0 in terms of og with 0OgOd, that generalizes to locally
convex topological spaces, the one obtained by Martinez-Legaz and Théra
[6], for eP0 and d ¼ 0 in the Banach setting.
In Section 2, we show how the integration result enables us to identify

the class of maximal cyclically monotone families of operators in the sense
of Verona and Verona (see [10]).

1. Integration of e-Fenchel Subdifferentials

As mentioned in the introduction, in [2], one can find the first result of
the type ‘‘ðoe fðxÞ � oegðxÞ; 8e > 0; 8x 2 XÞ , ð f ¼ gþ constantÞ’’ in the
general framework of spaces paired in duality (see [7]), and where the
function f belongs to C0ðXÞ and g is only assumed to be proper.
The proof of this early equivalence relies on a transitivity property of the
approximate Fenchel subdifferential pointed out in Lemma 1.1 of [2].
Here, we will use the subdifferential calculus in terms of e-subdifferentials
initiated by Hiriart-Urruty and Phelps in [4] (see also [3, 5]), and precisely,
the general composition rule of the following theorem, to provide an alter-
native proof of the integration result for e- subdifferentials of proper lsc
convex functions.

THEOREM 1.1 (Hiriart-Urruty and Phelps ½4�, Th. 3.1). Suppose that E and
F are real locally convex Hausdorff topological vector spaces. Let A :E! F
be a continuous affine mapping with linear part denoted by A0 and
f :F! R [ fþ1g be a proper lower semicontinuous convex function. Then,
for any x 2 E such that Ax 2 dom f,

oðf � AÞðxÞ ¼
\

e>0

cl �ðA�0oe fðAxÞÞ;

where A�0 is the adjoint mapping of A0 and cl� means the closure operation
with respect to the weak-star topology on the topological dual space of E.
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Now, let us state and prove the main result of this section:

THEOREM 1.2. Let X be a real locally convex Hausdorff topological vector
space paired in duality with its topological dual space X�. Let
f; g :X! R [ fþ1g be proper lsc convex functions and a be a positive real
number. Then, the following are equivalent:

(a) oe fðxÞ � oegðxÞ, 8x 2 X, 8e 2 R such that 0 < e < a;
(b) there exists some constant real number C independent of a, such that

f ¼ gþ C on X.

REMARK. In this theorem, we still work in the setting of spaces in duality
(as in [2]) but here, the inclusion (a) is required only for positive e below
some arbitrary threshold, which is less restrictive. Note also that in Theo-
rem 1.2, both functions lie in C0ðXÞ (which is natural since the lower semi-
continuity will hold a posteriori by virtue of the equality of the functions
up to an additive constant).

Proof. The implication ðbÞ ) ðaÞ is obvious, so we will just establish the
opposite one. The approach below is mainly inspired by the one adopted
by Thibault to prove Proposition 3 in [9]. Let us assume ðaÞ. The function
f is supposed to be proper and in view of ðaÞ, one has ; 6¼ dom f � dom g.
So without loss of generality, suppose that 0 2 dom f. Then fð0Þ 2 R and
gð0Þ 2 R. Fix any b 2 X, denote Db:¼Rb and define Ib :Db ! X by
IbðuÞ:¼ u for all u 2 Db. The mapping Ib is linear and continuous on Db

with respect to the topology induced by the one of X. Note that the func-
tions f � Ib and g � Ib are convex lsc and proper (since 0X 2 dom f\
Db � dom g \ Db) on Db. Hence, Db being one dimensional, dom oðf � IbÞ is
dense in domðf � IbÞ. We prove the following:

8u 2 Db; oðf � IbÞðuÞ � oðg � IbÞðuÞ: ð1:1Þ

Fix u 2 Db. If oðf � IbÞðuÞ ¼ ; then the inclusion (1.1) is obvious. So, sup-
pose that u 2 dom oðf � IbÞ and consider any u� 2 oð f � IbÞðuÞ. According to
Theorem 1.1, one has

u� 2
\

e>0

clðI �b oe fðIbuÞÞ;

where cl denotes just the closure, since Db is finite dimensional. In particu-
lar,

u� 2
\

0<e<a

clðI �b oe fðIbuÞÞ:
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By virtue of ðaÞ, for all real number e satisfying 0 < e < a, one may write
oe fðIbuÞ � oegðIbuÞ and hence

u� 2
\

0<e<a

clðI �b oegðIbuÞÞ:

Given any e1, e2 2 R, observing that

0 < e1Oe2 ) oe1gðIbuÞ � oe2gðIbuÞ;

one actually has

u� 2
\

e>0

clðI �b oe gðIbuÞÞ: ð1:2Þ

Applying Theorem 1.1 once again, the conclusion (1.2) ensures that u� 2
oðg � IbÞðuÞ. The element u� in oðf � IbÞðuÞ being arbitrary, one gets the
expected inclusion in (1.1). Therefore, since Db is one dimensional, the use
of the left or right derivative (see [8], p. 239) entails that

fðbÞ ¼ gðbÞ þ fð0Þ � gð0Þ: ð1:3Þ

The equality (1.3) holds for each vector b 2 X. Consequently, dom f ¼
dom g. Thus, putting C:¼ fð0Þ � gð0Þ, we obtain a constant real number,
independent of a such that fðxÞ ¼ gðxÞ þ C for all x 2 X, which completes
the proof. (

We have already noticed that, given any proper convex function f, any
point x 2 dom f and any real numbers e1, e2 with 0Oe1Oe2, one has
oe1fðxÞ � oe2 fðxÞ. Besides, it is not difficult to see that for each mP0:

omfðxÞ ¼
\

e>0

omþe fðxÞ;

which can be viewed as an ‘‘approximation from above’’ of omfðxÞ.
Adapting ideas of Martinez-Legaz and Théra ([6], Theorem 1) and using

Theorem 1.2, we get some ‘‘estimation from below’’ of the graph of the
approximate subdifferential, that is, a representation formula for the
ðeþ dÞ-subdifferential of a proper Isc convex function in terms of its g-sub-
differentials for all positive real numbers g not greater than dð> 0Þ, in the
general context of locally convex topological spaces.

THEOREM 1.3. Let X be a real locally convex Hausdorff topological vector
space, f 2 C0ðXÞ and let eP0, d > 0 be real numbers. Then
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oeþdf¼fðx;x�Þ 2X�X� :hx�;x�x0iþ
Xm�1

i¼0 hx
�
i ;xi�xiþ1i

þ hx�m;xm�xiþ
Xm

i¼0diP� e�d;

8ðxi;x�i Þ 2 odi f;0OdiOd; i¼ 0;1; . . . ;m; m2Ng:
ð1:4Þ

Proof. The inclusion ‘‘�’’ in (1.4) is immediate. Indeed, fix any ð�x;x�Þ in
oeþdf, m 2 N, ðxi;x�i Þ 2 odi f with 0OdiOd, i ¼ 0; 1; . . . ;m. Then, one has

þ1 > fðx0ÞP fð�xÞ þ hx�; x0 � �xi � e� d;

þ1 > fðxiþ1ÞP fðxiÞ þ hx�i ;xiþ1 � xii � di; 0OiOm� 1;

þ1 > fð�xÞP fðxmÞ þ hx�m; �x� xmi � dm:

Summing up these inequalities, one obtains

�e� dOhx�; �x� x0i þ
Xm�1

i¼0
hx�i ; xi � xiþ1i þ hx�m; xm � �xi þ

Xm

i¼0
di:

Now, let us show the reverse inclusion. Denote by G the right hand side
of (1.4). Because of the above inclusion and the fact that f belongs to
C0ðXÞ, one has G 6¼ ;. So, choose ð�x;x�Þ 2 G. Fix an arbitrary real number
d0 with 0 < d0Od, and any point x0 2 dom f. Then take x�o 2 od0 fðx0Þ,
which is possible since f 2 C0ðXÞ. Hence, for all y 2 X, define

gðyÞ :¼ sup
Xm�1

i¼0
hx�i ; xiþ1 � xii þ hx�m; y� xmi

(

�
Xm

i¼0
di : 0OdiOd; ðxi; x�i Þ 2 odi f; i ¼ 1; . . . ;m; m 2 N

)
:

Clearly, gðXÞ � R [ fþ1g and the function g is convex and lsc on X. Fur-
ther, it is not difficult to see that

fðyÞ � fðx0ÞPgðyÞ for all y 2 X:

As a consequence, dom f � dom g and g is proper. Moreover, for m ¼ 1,
x�1 :¼ x�0, x1 :¼ x0 and d1 :¼ d0, according to the definition of gðx0Þ, one has

�2d0Ogðx0Þð< þ1Þ: ð1:5Þ

We establish that, for all real number g with 0 < gOd and all z 2 X, we
have og fðzÞ � oggðzÞ. First, note that whenever z 62 dom f, one has
og fðzÞ ¼B for all positive g, and hence there is nothing to prove. So, fix g
such that 0 < gOd, z 2 dom f and z� 2 og fðzÞ. For all y 2 X, by definition
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of gðyÞ, (putting xmþ1 :¼ z, x�mþ1 :¼ z� and dmþ1 :¼ g for any integer m) one
may write

gðyÞPgðzÞ þ hz�; y� zi � g;

that is, z� 2 oggðzÞ. Thus,
8z 2 X;8g such that 0 < gOd; ogfðzÞ � oggðzÞ:

Then, we deduce from Theorem 1.2 that the functions f and g are equal up
to an additive constant. In other words, for all z 2 X

fðzÞ ¼ gðzÞ þ fðx0Þ � gðx0Þ:

In particular,

fðx0Þ � fð�xÞ � gðx0Þ ¼ �gð�xÞ: ð1:6Þ

Further, for any m 2 N, di with 0OdiOd, and ðxi;x�i Þ 2 odi f, i ¼ 1; . . . ;m,
using the inclusion ð�x;x�Þ 2 G and the definition of G, we see that

Xm�1

i¼0
hx�i ;xiþ1 � xii þ hx�m; �x� xmi �

Xm

i¼0
diOhx�; �x� x0i þ eþ d;

which leads to the inequality gð�xÞOhx�; �x� x0i þ eþ d. Necessarily, by
(1.6) one has:

fðx0Þ � fð�xÞ � gðx0ÞPhx�;x0 � �x i � e� d > �1;

and �x 2 dom f. Thus,

fðx0Þ � fð�xÞPhx�;x0 � �x i � e� dþ gðx0ÞPhx�;x0 � �xi � e� d� 2d0;

where the last inequality is due to (1.5). Making d0 # 0, we get

fðx0Þ � fð�xÞPhx�;x0 � �x i � e� d;

for all x0 2 dom f and hence for all x0 2 X. This exactly means that x� 2
oeþd fð�xÞ. The second inclusion holds and the proof is complete. (

2. Cyclically Monotone Families of Operators and Maximality

In this section, the integration result of Theorem 1.2 will be the main tool
in identifying the class of maximal cyclically monotone families of opera-
tors. The concept of cyclically monotone family of operators was first
introduced by Verona-Verona [10]. Fix a line segment A in R. Given a real
Hausdorff topological vector space X with topological dual space X �

(paired in duality by h:; :i), a family fTa :X! 2X
�
; a 2 Ag of operators is

said to be cyclically monotone if for all integer mP1, ai 2 A,
ðxi; x�i Þ 2 X� X � with x�i 2 TaiðxiÞ, i ¼ 0; 1; . . . ;m, one has
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Xm�1

i¼0
hx�i ;xi � xiþ1i þ hx�m; xm � x0iP�

Xm

i¼0
ai:

A cyclically monotone family ðTaÞa2A is called maximal if for any cycli-
cally monotone family ðSaÞa2A satisfying TaðxÞ � SaðxÞ for any x 2 X and
a 2 A, one has TaðxÞ ¼ SaðxÞ for all x 2 X and a 2 A.
It is easily seen that the family ðoe fÞeP0, where f is a proper (lsc) convex

function on X, is a cyclically monotone family.
We claim that maximal cyclically monotone families fTe :X! 2X

�
; eP0g

are exactly of the form ðoe fÞeP0 for some f 2 C0ðXÞ, X and X � being
endowed respectively with rðX;X�Þ and rðX�;XÞ topologies. This statement
extends Rockafellar’s characterization of maximal cyclically monotone
operators (see [8], p. 238) to families of operators. In the particular case
where X is a normed vector space, the following theorem can be deduced
from Theorem 2 (part (ii) and (iii)) of Verona-Verona [10]. We give a sim-
ple proof of it in the general framework of real Hausdorff topological vec-
tor spaces using Theorem 1.2. Equality between operators will be
understood in the graph sense.

THEOREM 2.1. Let X be a real locally convex Hausdorff topological vector
space, X � its topological dual and fTe :X! 2X

�
; eP0g a cyclically monotone

family of operators. Then, the family ðTeÞeP0 is maximal cyclically monotone
if and only if there exists a function h 2 C0ðXÞ such that Te ¼ oeh for all
eP0.
Moreover, the function h is unique up to an additive constant.

The proof involves the next lemma.

LEMMA 2.2. Suppose that X and X � are as in the above theorem and let
fTe :X! 2X

�
; eP0g be any family of operators. The following are equiva-

lent:
(a) ðTeÞeP0 is cyclically monotone;
(b) there exists a function h 2 C0ðXÞ satisfying TeðxÞ � oehðxÞ for all

x 2 X and eP0.

Proof. The implication ðbÞ ) ðaÞ is immediate because of the cyclic mono-
tonicity of the family ðoefÞe P 0 for any proper convex function f. So, we
prove ðaÞ ) ðbÞ. Suppose that ðTeÞe P 0 is cyclically monotone. If

[
fTeðxÞ; eP 0; x 2 Xg ¼ ;;

then any constant function h � r 2 R fits. Otherwise, choose e0P0 and
ðx0; x�0Þ 2 Te0 . Following Rockafellar ([8], p. 238), for any u 2 X define
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hðuÞ:¼ sup
Xm�1

i¼0
hx�i ; xiþ1 � xii þ hx�m; u� xmi

(

�
Xm

i¼0
ei : eiP0; ðxi; x�i Þ 2 Tei ; i ¼ 1; . . . ;m; m 2 N

)
:

It is clear that hðXÞ � R [ fþ1g and that h is convex and Isc on X . Fur-
ther, according to the cyclic monotonicity of ðTeÞeP0 one has hðx0ÞO0
which implies that h is proper. Fix any eP0 and x 2 X.
If TeðxÞ ¼ ;, there is nothing to prove, TeðxÞ � oehðxÞ. So assume the

contrary and choose any x� 2 TeðxÞ. For each fixed u 2 X, by definition of
hðuÞ (putting xmþ1 :¼ x;x�mþ1 :¼ x� and emþ1 :¼ e for arbitrary m 2 N) one
gets

hðuÞP hðxÞ þ hx�; u� xi � e:

The above inequality being true for all u 2 X, we conclude that x� 2 oehðxÞ
hence TeðxÞ � oehðxÞ. Thus, for such a function h, conclusion (b) holds. (

Proof of Theorem 2.1. If the family ðTeÞeP0 is maximal cyclically monotone,
then the conclusion follows from Lemma 2.2, where equality holds because
of the maximality of the family ðTeÞeP0.
To show the reverse implication, it suffices to prove that, given

f 2 C0ðXÞ, the family ðoe fÞeP0 is maximal cyclically monotone. One already
knows that the latter is cyclically monotone. Let us establish the maximali-
ty. Consider any cyclically monotone family fSe : X! 2X

�
; eP0g, satisfy-

ing

oe fðxÞ � SeðxÞ for all eP0 and x 2 X: ð2:1Þ

We have to prove that equality always holds in (2.1). Apply Lemma 2.2 to
the family ðSeÞeP0 and find some proper Isc convex function g such that
Se � oeg for all eP0. By virtue of (2.1) one gets,

oe fðxÞ � oegðxÞ; 8eP0; 8x 2 X:

Then Theorem 1.2 yields f=g+constant on X so that

oe fðxÞ � SeðxÞ � oe gðxÞ ¼ oe fðxÞ; eP0; x 2 X:

As a result, oef ¼ Se for any eP0, that ensures the maximality of ðoe fÞeP0.
The uniqueness is a direct consequence of the integration Theorem 1.2. (
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